Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying Shao, Chao Tu, Junyong Zhang and Zijian Guo*

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: zguo@netra.nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.004 Å R factor = 0.049 wR factor = 0.178 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

8-[*N-(tert-*Butoxycarbonyl)-L-glycyl]quinolin-8-amine

The title compound, $C_{16}H_{19}N_3O_3$, has two crystallographically independent molecules in the asymmetric unit. There are two intermolecular $(N-H\cdots O)$ and two intramolecular hydrogen bonds $(N-H\cdots N)$ in the crystal structure. The crystal packing is stabilized by π - π -stacking interactions.

Comment

Aminoquinoline-based ligands possess a strong fluorescence which could be used as a potential probe for zinc ion detection (Jiang *et al.*, 2002). Moreover, some novel quinoline carboxamide ligands and their copper complexes, as well as platinum complexes with pyridine carboxamide ligands (Zhang, Liu *et al.*, 2002), have shown potent cytotoxicity against human leukaemia, murine leukaemia, human hepatoma and human lung adenocarcinoma cell lines (Zhang *et al.*, 2003). Compound (I) and its Cu^{II} complex have been synthesized and reported previously (Zhang *et al.*, 2003). In this work, we report the crystal structure of (I).

The X-ray crystallographic study shows that the bond lengths and angles are within the normal ranges. The N2A-C10A and N2A-C8A bond distances in (I) are comparable with those in N-(8-quinolyl)pyridine-2-carboxamide [1.357 (2) and 1.401 (2) A; Zhang et al., 2001] and N-(8-quinoly)pyridine-3-carboxamide [1.349 (3) and 1.405 (3) Å; Zhang, Tu et al., 2002]; the C–C and C=O bond lengths are similar to those reported in [N-(8-quinolyl)-L-alanine-N'-BOC-carboxamide]copper(II) (Zhang et al., 2003). The torsion angle C12A - N3A - C11A - C10A is 77.7 (3)° and N2A - C10A - C10AC11A-N3A is $-137.2 (2)^{\circ}$. There are two intermolecular hydrogen bonds $(N3A - H3AA \cdots O1B)$ and N3B-H3BA···O1A) and two intramolecular hydrogen bonds $(N2B-H2BA\cdots N1B and N2A-H2AA\cdots N1A)$ in the crystal structure.

The crystal packing of compound (I) is shown in Fig. 2. There is a π - π -stacking interaction between adjacent molecules, related by inversion symmetry. The distance between the two adjacent quinoline rings is 3.524 (3) Å and the angle between the two planes is 2.1 (3)°. This interaction keeps the quinoline planes in a face-to-face disposition, giving rise to alternating hydrophilic and hydrophobic layers.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 17 March 2003

Accepted 18 March 2003

Online 31 March 2003

Figure 1

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2 The packing in the crystal structure.

Experimental

The title compound was obtained by the reaction of one molar equivalent of 8-aminoquinoline and N-(tert-butoxycarbonyl)glycine in THF at 258 K for 1 h (Zhang et al., 2003). Single crystals suitable for X-ray diffraction were recrystallized from THF and ethanol.

Crystal data

C ₁₆ H ₁₉ N ₃ O ₃	Z = 4
$M_r = 301.34$	$D_x = 1.298 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 11.430 (2) Å	Cell parameters from 5698
b = 12.240 (2) Å	reflections
c = 12.960 (3) Å	$\theta = 1.7 - 25.0^{\circ}$
$\alpha = 65.33 (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 80.60 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 69.44 \ (3)^{\circ}$	Block, brown
V = 1542.4 (7) Å ³	$0.40\times0.30\times0.30$ mm
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.023$
$2\theta/\omega$ scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: ψ scan	$h = 0 \rightarrow 13$
(North et al., 1968)	$k = -13 \rightarrow 14$
$T_{\min} = 0.968, T_{\max} = 0.973$	$l = -15 \rightarrow 15$
5698 measured reflections	3 standard reflections

every 97 reflections

intensity decay: 7.1%

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.178$ $(\Delta/\sigma)_{\rm max} < 0.001$ S=1.00 $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ 5401 reflections $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$ 397 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1A-C10A	1.221 (3)	O1B-C10B	1.221 (3)
O2A - C12A	1.213 (3)	O2B-C12B	1.206 (3)
O3A - C12A	1.338 (3)	O3B-C12B	1.351 (3)
O3A-C13A	1.475 (3)	O3B-C13B	1.472 (3)
N1A - C1A	1.319 (3)	N1B-C1B	1.316 (3)
N1A-C9A	1.360 (3)	N1B-C9B	1.359 (3)
N2A-C10A	1.356 (3)	N2B-C10B	1.346 (3)
N2A - C8A	1.403 (3)	N2B-C8B	1.400 (3)
N3A-C12A	1.334 (3)	N3B-C12B	1.336 (3)
N3A-C11A	1.439 (3)	N3B-C11B	1.441 (3)
C12A-O3A-C13A	121.4 (2)	C12B-O3B-C13B	121.6 (2)
C10A-N2A-C8A	128.7 (2)	C10B-N2B-C8B	130.1 (2)
C12A-N3A-C11A	120.5 (2)	C12B-N3B-C11B	118.8 (2)
N2A - C8A - C9A	115.0 (2)	N2B-C8B-C9B	114.6 (2)
O1A - C10A - N2A	123.6 (2)	O1B-C10B-N2B	123.5 (2)
O1A-C10A-C11A	121.1 (2)	O1B-C10B-C11B	122.6 (2)
N2A-C10A-C11A	115.3 (2)	N2B-C10B-C11B	113.9 (2)
N3A-C11A-C10A	112.1 (2)	N3B-C11B-C10B	113.1 (2)
O2A - C12A - N3A	122.9 (2)	O2B-C12B-N3B	124.6 (3)
O2A-C12A-O3A	125.7 (2)	O2B-C12B-O3B	125.5 (3)
N3A-C12A-O3A	111.5 (2)	N3B-C12B-O3B	109.9 (2)

+ 0.4212P]

where $P = (F_0^2 + 2F_c^2)/3$

Table 2			
Hydrogen-bonding geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2A - H2AA \cdots N1A$ $N3A - H3AA \cdots O1B$ $N2B - H2BA \cdots N1B$ $N3B - H3BA \cdots O1A$	0.78 (3) 0.86 0.86 0.86	2.26 (3) 2.16 2.22 2.20	2.669 (3) 2.949 (3) 2.647 (3) 2.991 (3)	113 (2) 153 111 153

All H atoms were placed in geometrically calculated positions, except for H2AA, which was located from a different Fourier map and refined isotropically [C-H = 0.93 Å and N-H 0.86 Å; U_{iso} = $1.2U_{eq}$ (parent atom)].

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China. The authors thank Mr Wang Hua-qin (Center of Materials Analysis, Nanjing University) for the X-ray data collection.

References

Jiang, P. J., Chen, L. Z., Lin, J., Liu, Q., Ding, J., Gao, X. & Guo, Z. J. (2002) Chem. Commun. pp. 1424-1425.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

5401 independent reflections

3476 reflections with $I > 2\sigma(I)$

Sheldrick, G. M. (1997). *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
- Zhang, J. Y., Ke, X. K., Tu, C., Lin, J., Ding, J., Lin, L. P., Fun, H.-K., You, X. Z. & Guo, Z. J. (2003). *Biometals*. In the press.
- Zhang, J. Y., Liu, Q., Duan, C. Y, Shao, Y., Ding, *j.* Miao, Z. H, You, X. Z. & Guo, Z. J. (2002). *J. Chem. Soc. Dalton Trans.* pp. 591–597.
- Zhang, J. Y., Liu, Q., Xu, Y., Zhang, Y., You, X. Z. & Guo, Z. J. (2001). Acta Cryst. C57, 109–110.
- Zhang, J. Y., Tu, C., Lin, J., Fun, H.-K., Chantrapromma, S., You, X. Z. & Guo, Z. J. (2002). *Chin. J. Inorg. Chem.* **18**, 554–558.